Supporting Information

Dual Targeting of Steroid Sulfatase (STS) and 17 β-Hydroxysteroid
 Dehydrogenase Type 1 (17ß-HSD1) by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis

Abdelrahman Mohamed ${ }^{1,2}$, Mohamed Salah ${ }^{1,3}$, Mariam Tahoun ${ }^{1}$, Manuel Hawner ${ }^{1}$, Ahmed S. Abdelsamie ${ }^{4,5}$, Martin Frotscher*,1
${ }^{1}$ Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany
${ }^{2}$ Pharmaceutical Organic Chemistry Department, Assiut University, Assiut-71526, Egypt
${ }^{3}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt.
${ }^{4}$ Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt
${ }^{5}$ Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus Building E81, 66123, Saarbrücken, Germany.

Corresponding Author

* Phone: +49 681 / 302-70330. Email: m.frotscher@mx.uni-saarland.de

Table of contents

1. Synthesis of compounds 1a, 5a-12a, 25a-27a, 32a-34a, 1b, 9b, 10b-12b,25b, 26b, 31b-34b, 10c, 31c, 32c, 1-12, 25-27 and 31-34
 S3

2. Representative ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and MS spectra of compounds $\mathbf{1 3}, \mathbf{1 7}, \mathbf{1 9}, 3 \mathbf{3}$ and $\mathbf{3 7}$S21
3. Validation of the drug-prodrug concept (compounds 16, 19, and 37) S29
4. Validation of drug-prodrug concept for compound $\mathbf{1 3}$ at different starting concentrationsS34
5. HEK-293 cell growth inhibition assay and cytotoxicity data S36
6. Synthesis of compounds 1a, 5a-12a, 25a-27a, 32a-34a, 1b, 9b, 10b-12b, 25b, 26b, 31b-34b, 10c, 31c, 32c, 1-12, 25-27 and 31-34.

5-Bromo-N-methyl-N-(o-tolyl)furan-2-carboxamide (1b). The title compound was prepared according to method A and B using 5-bromofuran-2-carboxylic acid ($1.90 \mathrm{~g}, 10 \mathrm{mmol}$), thionyl chloride ($1.45 \mathrm{ml}, 20 \mathrm{mmol}$) and DMF (30 drops) in toluene (50 ml). The corresponding $\mathrm{N}, 2-$ dimethylaniline ($1.25 \mathrm{ml}, 10 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.79 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $5: 1)$ to give $2.1 \mathrm{~g}(7.13 \mathrm{mmol} / 71 \%)$ of the analytically pure compound (purity: 96.99%). $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}_{2}$; MW 294.15; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.39$ - 7.32 (m, $2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.47$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.12$ (s, 3H); MS (ESI): 293.75, $295.95(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Methoxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (1a). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.535 \mathrm{~g}, 1.82 \mathrm{mmol}, 1$ equiv) and (4methoxyphenyl)boronic acid ($0.414 \mathrm{~g}, 2.73 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($2.37 \mathrm{~g}, 7.28 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (105 mg , $0.091 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $0.5 \mathrm{~g}(1.55 \mathrm{mmol} / 85 \%)$ of the analytically pure compound (purity: 98.48%). $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}$; MW 321.38; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), $3.24(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 322.12 $(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (1). The title compound was prepared according to method E by the reaction of $\mathbf{1 a}\left(0.4 \mathrm{~g}, 1.24 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}$ $(1.30 \mathrm{ml}, 12.4 \mathrm{mmol}, 10$ equiv) in dichloromethane $(50 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 98.5:1.5) to give $0.29 \mathrm{~g}(0.944 \mathrm{mmol} / 76 \%)$ of the analytically pure compound (purity: 99.36%). $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$; MW 307.35; mp: 172-175 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 157.95,157.94,155.10,145.49,142.84,135.26,131.11$, 128.16, 128.13, 127.38, 125.66, 120.43, 118.34, 115.52, 104.58, 36.88, 16.96; MS (ESI): 308.12
$(\mathrm{M}+\mathrm{H})^{+}$.
5-(3-Hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (2). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.294 \mathrm{~g}, 1 \mathrm{mmol}, 1$ equiv) and (3hydroxyphenyl) boronic acid ($0.206 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($1.3 \mathrm{~g}, 4 \mathrm{mmol}$, 4 equiv) and tetrakis(triphenylphosphine) palladium ($57 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.05 equiv) in DME/water $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $3: 1$) to give $0.234 \mathrm{~g}(0.76 \mathrm{mmol} / 76 \%)$ of the analytically pure compound (purity: 98.92%). $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$; MW 307.35; mp: 134-136 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.30 (s, 3H), 2.23 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone- d_{6}) δ 159.15, 158.57, 155.87, $147.97,144.15,136.70,132.18,131.92,130.67,129.22,129.15,128.30,118.66,116.47,116.38$, 111.81, 107.25, 37.29, 17.52; MS (ESI): $308.00(\mathrm{M}+\mathrm{H})^{+}$.

5-(2-Hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (3). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.294 \mathrm{~g}, 1 \mathrm{mmol}, 1$ equiv) and (2hydroxyphenyl)boronic acid $(0.206 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($1.3 \mathrm{~g}, 4 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium ($57 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.05 equiv) in DME/water $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 3:1) to give $0.222 \mathrm{~g}(0.72 \mathrm{mmol} / 72 \%)$ of the analytically pure compound (purity: 98.24%). $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$; MW 307.35; mp: 197-199 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.21$ (s, 1H), $7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{ddd}, J=8.7,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.84$ (m, 1H), 6.81 (dd, $J=8.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (s, 3 H), $2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 157.97, 154.06, 151.77, 145.14, 142.86, 135.16, 131.12, 129.21, 128.10, 128.04, 127.38, 125.41, 118.91, 118.32, 116.07, 115.92, 110.39, 36.99, 16.97; MS (ESI): $308.01(\mathrm{M}+\mathrm{H})^{+}$.

5-(3-Chloro-4-hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (4).The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.294 \mathrm{~g}, 1 \mathrm{mmol}, 1$ equiv) and (3-chloro-4-hydroxyphenyl)boronic acid ($0.259 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($1.3 \mathrm{~g}, 4 \mathrm{mmol}$, 4 equiv) and tetrakis(triphenylphosphine) palladium ($57 \mathrm{mg}, 0.05$ mmol, 0.05 equiv) in DME/water $1: 1(50 \mathrm{ml})$. The product was purified by column
chromatography (petroleum ether /ethyl acetate 3:1) to give $0.233 \mathrm{~g}(0.68 \mathrm{mmol} / 68 \%)$ of the analytically pure compound (purity: 98.59%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{3}$; MW 341.79 ; mp: $77-80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 157.74,153.43,153.42$, $146.07,142.79,135.21,131.09,128.32,128.08,127.36,125.27,124.04,121.54,120.25,118.57$, 116.82, 105.73, 36.96, 16.98; MS (ESI): 342.07, $344.11(\mathrm{M}+\mathrm{H})^{+}$.

5-(3-Fluoro-4-methoxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (5a). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.294 \mathrm{~g}, 1 \mathrm{mmol}, 1$ equiv) and (3-fluoro-4-methoxyphenyl)boronic acid $(0.254 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($1.3 \mathrm{~g}, 4 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (57 mg , $0.05 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{DME} /$ water $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $0.292 \mathrm{~g}(0.86 \mathrm{mmol} / 86 \%)$ of the analytically pure compound (purity: 98.26%). $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{3}$; MW 339.37; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dt}, J=7.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.93$ (ddd, $J=8.5,2.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $340.07(\mathrm{M}+\mathrm{H})^{+}$.

5-(3-Fluoro-4-hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (5). The title compound was prepared according to method E by the reaction of $\mathbf{5 a}(0.250 \mathrm{~g}, 0.736 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(0.775 \mathrm{ml}, 7.36 \mathrm{mmol}, 10$ equiv) in dichloromethane (30 ml). The product was purified by column chromatography (dichloromethane/methanol 98:2) to give $0.185 \mathrm{~g}(0.56$ $\mathrm{mmol} / 77 \%$) of the analytically pure compound (purity: 98.48%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: 190-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.00-$ $6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}$, 3H), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 157.78,152.83(\mathrm{~d}, J=224.5 \mathrm{~Hz}$), 150.02 , $146.00,145.42$ (d, $J=12.3 \mathrm{~Hz}$), 142.82, 135.25, 131.11, 128.18 (d, $J=12.8 \mathrm{~Hz}$), 127.39, 121.00 (d, $J=7.2 \mathrm{~Hz}$), $120.66(\mathrm{~d}, ~ J=3.1 \mathrm{~Hz}), 118.49,118.02,118.00,111.90(\mathrm{~d}, J=20.4 \mathrm{~Hz}), 105.80$, 36.96, 16.98; MS (ESI): $326.01(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Methoxy-3-methylphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (6a). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.441 \mathrm{~g}, 1.49 \mathrm{mmol}, 1$
equiv) and (4-methoxy-3-methylphenyl)boronic acid ($0.373 \mathrm{~g}, 2.24 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate $(1.94 \mathrm{~g}, 5.96 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium ($86 \mathrm{mg}, 0.074 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{DME} /$ water $1: 1(60 \mathrm{ml}$). The product was purified by column chromatography (petroleum ether /ethyl acetate $3: 1$) to give 0.44 g (1.31 $\mathrm{mmol} / 88 \%$) of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$; MW $335.40 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.44-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.00$ (m, 1H), 6.87 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (s, 3H), 3.29 (s, 3H), 2.22 (s, 3H), 2.15 (s, 3H); MS (ESI): 336.18 (M+H) .

5-(4-Hydroxy-3-methylphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (6). The title compound was prepared according to method E by the reaction of $\mathbf{6 a}(0.420 \mathrm{~g}, 1.25 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(1.31 \mathrm{ml}, 12.52 \mathrm{mmol}, 10$ equiv) in dichloromethane (30 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate $2: 1$) to give $0.29 \mathrm{~g}(0.9$ $\mathrm{mmol} / 72 \%$) of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}$; MW 321.38; mp: 183-186 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H})$, $6.87(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}$, 3H), 2.14 (s, 3H), 2.08 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 157.91, 156.09, 155.32, $145.49,142.94,135.25,131.12,128.18,128.11,127.39,126.38,124.32,123.08,120.27,118.57$, $114.75,104.43,36.98,17.02,15.74 ;$ MS (ESI): $322.15(\mathrm{M}+\mathrm{H})^{+}$.

5-(2-Chloro-4-methoxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (7a). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.600 \mathrm{~g}, 2.03 \mathrm{mmol}, 1$ equiv) and (2-chloro-4-methoxyphenyl)boronic acid ($0.57 \mathrm{~g}, 3.05 \mathrm{mmol}$, 1.5 equiv) in the presence of cesium carbonate ($2.64 \mathrm{~g}, 8.12 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium ($117 \mathrm{mg}, 0.101 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(60 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 3:1) to give 0.585 g (1.64 $\mathrm{mmol} / 81 \%$) of the analytically pure compound (purity: 98.33%). $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}_{3}$; MW 355.82; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 356.06, $358.07(\mathrm{M}+\mathrm{H})^{+}$.

5-(2-Chloro-4-hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (7). The title compound was prepared according to method E by the reaction of $7 \mathbf{a}(0.585 \mathrm{~g}, 1.64 \mathrm{mmol}, 1$
equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(1.72 \mathrm{ml}, 16.44 \mathrm{mmol}, 10$ equiv) in dichloromethane $(50 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 98:2) to give 0.4 g (1.17 $\mathrm{mmol} / 71 \%$) of the analytically pure compound (purity: 98.40%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}_{3}$; MW 341.79; mp: 198-201 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (s, 3H), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 158.28$, 157.79, 151.09, 145.67, 142.71, $135.24,131.23,130.28,129.21,128.24,128.15,127.49,118.54,117.93,116.89,114.79,109.74$, 36.99, 16.98; MS (ESI): 342.02, $344.09(\mathrm{M}+\mathrm{H})^{+}$.

5-(2-Fluoro-4-methoxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (8a). The title compound was prepared according to method D by the reaction of $\mathbf{1 b}(0.700 \mathrm{~g}, 2.37 \mathrm{mmol}, 1$ equiv) and (2-fluoro-4-methoxyphenyl)boronic acid ($0.606 \mathrm{~g}, 3.56 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($3.08 \mathrm{~g}, 9.48 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium ($137 \mathrm{mg}, 0.118 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(80 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $0.674 \mathrm{~g}(1.98$ $\mathrm{mmol} / 83 \%$) of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{3} ;$ MW $339.37 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.72(\mathrm{~m}$, $2 \mathrm{H}), 6.55(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $340.13(\mathrm{M}+\mathrm{H})^{+}$.

5-(2-Fluoro-4-hydroxyphenyl)-N-methyl-N-(o-tolyl)furan-2-carboxamide (8). The title compound was prepared according to method E by the reaction of $\mathbf{8 a}(0.674 \mathrm{~g}, 1.98 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(2.08 \mathrm{ml}, 19.86 \mathrm{mmol}, 10$ equiv) in dichloromethane $(50 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 99.5:0.5) to give 0.55 g ($1.69 \mathrm{mmol} / 85 \%$) of the analytically pure compound (purity: 99.04%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: 185-187 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 4 \mathrm{H})$, $6.82(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=13.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO$\left.d_{6}\right) \delta 160.19,159.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 158.21,157.77,149.20(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 144.10(\mathrm{~d}, J=$ 255.13 Hz), 135.25, 131.16, 128.18 (d, $J=12.9 \mathrm{~Hz}$), 127.44, 126.87 (d, $J=5.0 \mathrm{~Hz}$), 118.26, $112.01,112.00,108.48(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 108.34(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 103.12(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 36.93$, 16.95; MS (ESI): $326.06(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(2-fluoro-6-methylphenyl)furan-2-carboxamide (9b). The title compound was prepared according to method A and B using 5-bromofuran-2-carboxylic acid ($1.90 \mathrm{~g}, 10 \mathrm{mmol}$), thionyl chloride ($1.45 \mathrm{ml}, 20 \mathrm{mmol}$) and DMF (30 drops) in toluene (50 ml). The corresponding 2-fluoro-6-methylaniline ($1.11 \mathrm{ml}, 10 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.79 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $1.5 \mathrm{~g}(5.03 \mathrm{mmol} / 50 \%)$ of the analytically pure compound (purity: 96.76%). $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrFNO}_{2}$; MW 298.11; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.93$ (s, 1H), $7.34(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 1H), 2.21 ($\mathrm{s}, 3 \mathrm{H}$); MS (ESI): 297.82, $299.85(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(2-fluoro-6-methylphenyl)-N-methylfuran-2-carboxamide (9a). The title compound was prepared according to method C using 5 -bromo-N-(2-fluoro-6-methylphenyl)furan-2carboxamide ($0.5 \mathrm{~g}, 1.67 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.08 \mathrm{~g}, 3.35 \mathrm{mmol}, 2$ equiv) and iodomethane ($0.103 \mathrm{ml}, 1.67 \mathrm{mmol}$, 1 equiv) in DMF (30 ml). The product was purified by column chromatography (dichloromethane/methanol 99.5:0.5) to give $0.27 \mathrm{~g}(0.86 \mathrm{mmol} / 51 \%)$ of the analytically pure compound (purity: 98.10%). $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrFNO}_{2}$; MW $312.14 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.38(\mathrm{td}, J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): 312.02,313.91$ $(\mathrm{M}+\mathrm{H})^{+}$.

N-(2-Fluoro-6-methylphenyl)-5-(4-hydroxyphenyl)-N-methylfuran-2-carboxamide (9). The title compound was prepared according to method D by the reaction of $9 \mathrm{a}(0.168 \mathrm{~g}, 0.538 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($0.111 \mathrm{~g}, 0.807 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($0.701 \mathrm{~g}, 2.15 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (31 $\mathrm{mg}, 0.026 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 2:1) to give $0.098 \mathrm{~g}(0.3 \mathrm{mmol} / 56 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: 171-173 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.41$ - 7.26 (m, 3H), 7.25 (s, 1H), 7.11 (ddt, $J=7.8,1.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06$ (dddd, $J=9.0,8.2,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.30(\mathrm{~m}, 2 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 159.98,158.93(\mathrm{~d}, J=233.7$ $\mathrm{Hz}), 156.78(\mathrm{~d}, J=52.2 \mathrm{~Hz}), 145.28,138.80,130.85(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 129.40(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $126.55(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 126.44,122.34,119.06,116.22,115.90,114.40(\mathrm{~d}, J=20.4 \mathrm{~Hz}), 104.90$,
36.63, 17.38; MS (ESI): $325.94(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(5-fluoro-2-methylphenyl)furan-2-carboxamide (10c). The title compound was prepared according to method A and B using 5-bromofuran-2-carboxylic acid ($1.90 \mathrm{~g}, 10 \mathrm{mmol}$), thionyl chloride ($1.45 \mathrm{ml}, 20 \mathrm{mmol}$) and DMF (30 drops) in toluene (50 ml). The corresponding 5-fluoro-2-methylaniline ($1.11 \mathrm{ml}, 10 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.79 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $2.1 \mathrm{~g}(7.04 \mathrm{mmol} / 70 \%)$ of the analytically pure compound (purity: 98.19%). $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrFNO}_{2}$; MW 298.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.88$ (s, 1H), 7.35 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (ddd, $J=8.5,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=10.3,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{td}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (s, 3H); MS (ESI): 298.02, $300.00(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(5-fluoro-2-methylphenyl)-N-methylfuran-2-carboxamide (10b). The title compound was prepared according to method C using 5 -bromo-N-(5-fluoro-2-methylphenyl)furan-2carboxamide ($1.766 \mathrm{~g}, 5.92 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.284 \mathrm{~g}, 11.85 \mathrm{mmol}, 2$ equiv) and iodomethane ($0.368 \mathrm{ml}, 5.92 \mathrm{mmol}$, 1 equiv) in DMF (60 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $1.45 \mathrm{~g}(4.64 \mathrm{mmol} / 78 \%)$ of the analytically pure compound (purity: 99.97%). $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrFNO}_{2}$; MW 312.14; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.39(\mathrm{dd}, J=8.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=$ $8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 311.98, $313.96(\mathrm{M}+\mathrm{H})^{+}$.

N-(5-Fluoro-2-methylphenyl)-5-(4-methoxyphenyl)-N-methylfuran-2-carboxamide (10a). The title compound was prepared according to method D by the reaction of $\mathbf{1 0 b}(1.13 \mathrm{~g}, 3.64 \mathrm{mmol}$, 1 equiv) and (4-methoxyphenyl)boronic acid ($0.830 \mathrm{~g}, 5.46 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($4.74 \mathrm{~g}, 14.56 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (210 $\mathrm{mg}, 0.182 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(80 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $1.05 \mathrm{~g}(3.09 \mathrm{mmol} / 85 \%)$ of the analytically pure compound (purity: 96.64%). $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{3}$; MW 339.37; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=9.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.53(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $340.12(\mathrm{M}+\mathrm{H})^{+}$.

N-(5-Fluoro-2-methylphenyl)-5-(4-hydroxyphenyl)-N-methylfuran-2-carboxamide (10). The title compound was prepared according to method E by the reaction of $\mathbf{1 0 a}(1.00 \mathrm{~g}, 2.94 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(3.1 \mathrm{ml}, 29.46 \mathrm{mmol}, 10$ equiv) in dichloromethane (80 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate 2:1) to give 0.711 g ($2.18 \mathrm{mmol} / 74 \%$) of the analytically pure compound (purity: 97.27%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: 184-186 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.28 (dd, $J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 160.78(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 158.00,157.78,155.21,145.34$, $143.92(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 132.22(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}), 131.53(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 125.59,120.36,118.70,115.55,115.19(\mathrm{~d}, J=21.7 \mathrm{~Hz})$, 114.93 (d, $J=20.5 \mathrm{~Hz}$), 104.71, 36.72, 16.26; MS (ESI): $326.14(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(4-fluoro-2-methylphenyl)furan-2-carboxamide (11b). The title compound was prepared according to method A and B using 5-bromofuran-2-carboxylic acid ($1.90 \mathrm{~g}, 10 \mathrm{mmol}$), thionyl chloride ($1.45 \mathrm{ml}, 20 \mathrm{mmol}$) and DMF (30 drops) in toluene (50 ml). The corresponding 4-fluoro-2-methylaniline ($1.11 \mathrm{ml}, 10 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.79 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $2.53 \mathrm{~g}(8.48 \mathrm{mmol} / 84 \%)$ of the analytically pure compound (purity: 98.11%). $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrFNO}_{2}$; MW 298.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.88$ (s, 1H), $7.34-7.26$ (m, 2H), 7.14 (ddd, $J=9.6,3.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (td, $J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (s, 3H); MS (ESI): 297.99, $300.03(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(4-fluoro-2-methylphenyl)-N-methylfuran-2-carboxamide (11a). The title compound was prepared according to method C using 5-bromo-N-(4-fluoro-2-methylphenyl)furan-2carboxamide ($1.119 \mathrm{~g}, 3.75 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.18 \mathrm{~g}, 7.5 \mathrm{mmol}, 2$ equiv) and iodomethane ($0.233 \mathrm{ml}, 3.75 \mathrm{mmol}$, 1 equiv) in DMF (40 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $0.80 \mathrm{~g}(2.56 \mathrm{mmol} / 86 \%)$ of the analytically pure compound (purity: 97.32%). $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrFNO}_{2}$; MW $312.14 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) 7.34 (dd, $J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (dd, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{td}, J=8.5,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}):$ 311.98, $313.97(\mathrm{M}+\mathrm{H})^{+}$.

N-(4-fluoro-2-methylphenyl)-5-(4-hydroxyphenyl)-N-methylfuran-2-carboxamide (11). The title
compound was prepared according to method D by the reaction of $\mathbf{1 1 a}(0.750 \mathrm{~g}, 2.4 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($0.496 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($3.12 \mathrm{~g}, 9.6 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (138 $\mathrm{mg}, 0.12 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{DME} /$ water $1: 1(80 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 2:1) to give $0.55 \mathrm{~g}(1.69 \mathrm{mmol} / 70 \%)$ of the analytically pure compound (purity: 95.22%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: $196-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.78$ (s, 1H), 7.35 (dd, $J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dd, $J=9.8,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=8.6,3.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.73$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 161.26(\mathrm{~d}, J=$ $244.8 \mathrm{~Hz}), 157.98,155.14,145.42,139.18(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 138.19$ (d, $J=8.7 \mathrm{~Hz}), 130.06$ (d, $J=$ $9.1 \mathrm{~Hz}), 125.59,125.58,120.40,118.62,117.41(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 115.53,113.91(\mathrm{~d}, J=22.2$ $\mathrm{Hz}), 104.66,36.92$, 17.04; MS (ESI): $326.11(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(3-fluoro-2-methylphenyl)furan-2-carboxamide (12b). The title compound was prepared according to method A and B using 5-bromofuran-2-carboxylic acid ($1.90 \mathrm{~g}, 10 \mathrm{mmol}$), thionyl chloride ($1.45 \mathrm{ml}, 20 \mathrm{mmol}$) and DMF (30 drops) in toluene (50 ml). The corresponding 5-fluoro-2-methylaniline ($1.11 \mathrm{ml}, 10 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.79 \mathrm{ml}, 20 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (dichloromethane/methanol $99.5: 0.5$) to give $2.31 \mathrm{~g}(7.77 \mathrm{mmol} / 77 \%)$ of the analytically pure compound (purity: 96.67 \%). $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrFNO}_{2}$; MW 298.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ $10.05(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{tdd}, J=8.2,6.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H})$, 7.09 (ddd, $J=9.6,8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (s, 3H); MS (ESI): 297.88, $299.97(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(3-fluoro-2-methylphenyl)-N-methylfuran-2-carboxamide (12a). The title compound was prepared according to method C using 5-bromo-N-(3-fluoro-2-methylphenyl)furan-2carboxamide ($1.319 \mathrm{~g}, 7.77 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.373 \mathrm{~g}, 15.55 \mathrm{mmol}, 2$ equiv) and iodomethane ($0.483 \mathrm{ml}, 7.77 \mathrm{mmol}$, 1 equiv) in DMF (70 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate 3:1) to give $1.97 \mathrm{~g}(6.31 \mathrm{mmol} / 81 \%)$ of the analytically pure compound (purity: 98.04%). $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrFNO}_{2}$; MW 312.14; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.37-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 311.94, $313.95(\mathrm{M}+\mathrm{H})^{+}$.

N-(3-Fluoro-2-methylphenyl)-5-(4-hydroxyphenyl)-N-methylfuran-2-carboxamide (12). The title compound was prepared according to method D by the reaction of $\mathbf{1 2 a}(1.55 \mathrm{~g}, 4.97 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($1.029 \mathrm{~g}, 7.45 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($6.47 \mathrm{~g}, 19.88 \mathrm{mmol}$, 4 equiv) and tetrakis(triphenylphosphine) palladium (287 $\mathrm{mg}, 0.248 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(100 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $2: 1$) to give $1.33 \mathrm{~g}(4.08 \mathrm{mmol} / 82 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{3}$; MW 325.34; mp: $195-197{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 161.09(\mathrm{~d}$, $J=243.4 \mathrm{~Hz}), 157.97(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 155.20,145.30,144.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 127.89(\mathrm{~d}, J=9.4$ $\mathrm{Hz}), 125.54,124.24,122.85(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 120.34,118.79,115.53,115.44,114.71(\mathrm{~d}, J=22.4$ Hz), 104.72, 37.01, 9.29; MS (ESI): $326.07(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(3-methylpyridin-2-yl)furan-2-carboxamide (25b). To a suspension of 5-bromofuran-2-carboxylic acid ($1.00 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DCC ($1.08 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DMAP ($31 \mathrm{mg}, 0.261 \mathrm{mmol}, 0.05$ equiv) in 40 ml DCM at $0^{\circ} \mathrm{C} 4$-methylpyridin-3-amine (0.565 $\mathrm{g}, 5.23 \mathrm{mmol}, 1$ equiv) was added. The mixture was stirred at room temperature overnight. The mixture was quenched with water (50 mL) and extracted three times with ethyl acetate (3×30 $\mathrm{mL})$. The organic layer was washed with water, dried over MgSO 4 , filtered and evaporated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane/methanol 94:6) to give $0.956 \mathrm{~g}(3.4 \mathrm{mmol} / 65 \%)$ of the analytically pure compound (purity: 99.99 \%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 281.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ 10.52 (s, 1H), 8.31 (ddd, $J=4.7,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (ddd, $J=7.6,1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (d, J $=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dd, $J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}):$ 280.95, $282.94(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-methyl-N-(3-methylpyridin-2-yl)furan-2-carboxamide (25a). The title compound was prepared according to method C using 5-bromo-N-(3-methylpyridin-2-yl)furan-2-carboxamide $(0.866 \mathrm{~g}, 3.08 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.147 \mathrm{~g}, 6.16 \mathrm{mmol}, 2$ equiv) and iodomethane $(0.191 \mathrm{ml}$, $3.08 \mathrm{mmol}, 1$ equiv) in DMF (30 ml). The product was purified by column chromatography (dichloromethane/methanol 97:3) to give $0.754 \mathrm{~g}(2.55 \mathrm{mmol} / 82 \%)$ of the analytically pure
compound (purity: 99.99%). $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 295.14; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ 8.35 (dd, $J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (ddd, $J=7.6,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ (ESI): 294.99, 297.00 $(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Hydroxyphenyl)-N-methyl-N-(3-methylpyridin-2-yl)furan-2-carboxamide (25). The title compound was prepared according to method D by the reaction of $\mathbf{2 5 a}(0.7 \mathrm{~g}, 2.37 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($0.49 \mathrm{~g}, 3.55 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($3.08 \mathrm{~g}, 9.48 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (136 $\mathrm{mg}, 0.118 \mathrm{mmol}, 0.05$ equiv) in DME/water $1: 1(40 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate $1: 1$) to give $0.55 \mathrm{~g}(1.78 \mathrm{mmol} / 75 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$; MW 308.34; mp: 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.35$ (ddd, $J=4.7,2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (ddd, $J=$ $7.6,1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}$, 2H), 3.25 (s, 3H), 2.20 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 158.32, 157.99, 155.18, $155.08,146.86,145.69,140.18,130.24,125.55,123.67,120.26,118.52,115.55,104.75,35.07$, 16.70.; MS (ESI): $309.09(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(4-methylpyridin-3-yl)furan-2-carboxamide (26b). To a suspension of 5-bromofuran-2-carboxylic acid ($1.00 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DCC ($1.08 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DMAP ($31 \mathrm{mg}, 0.261 \mathrm{mmol}, 0.05$ equiv) in 40 ml DCM at $0^{\circ} \mathrm{C}$ 4-methylpyridin-3-amine (0.565 $\mathrm{g}, 5.23 \mathrm{mmol}, 1$ equiv) was added. The mixture was stirred at room temperature overnight. The mixture was quenched with water (50 mL) and extracted three times with ethyl acetate (3×30 mL). The organic layer was washed with water, dried over MgSO 4 , filtered and evaporated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane/methanol 94:6) to give $1.1 \mathrm{~g}(3.91 \mathrm{mmol} / 74 \%)$ of the analytically pure compound (purity: 92.05%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 281.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ $10.11(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, 1H), 2.22 (s, 3H); MS (ESI): 280.93, $282.94(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-methyl-N-(4-methylpyridin-3-yl)furan-2-carboxamide (26a). The title compound was prepared according to method C using 5-bromo-N-(4-methylpyridin-3-yl)furan-2-carboxamide $(0.94 \mathrm{~g}, 3.34 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.16 \mathrm{~g}, 6.68 \mathrm{mmol}, 2$ equiv $)$ and iodomethane $(0.207 \mathrm{ml}$,
3.34 mmol , 1 equiv) in DMF (30 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate 1:1) to give $0.65 \mathrm{~g}(2.2 \mathrm{mmol} / 65 \%)$ of the analytically pure compound (purity: 97.69%). $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 295.14; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ $8.48(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (s, 3H), 2.19 (s, 3H); MS (ESI): 294.97, 296.97 (M+H) ${ }^{+}$.

5-(4-Hydroxyphenyl)-N-methyl-N-(4-methylpyridin-3-yl)furan-2-carboxamide (26). The title compound was prepared according to method D by the reaction of $\mathbf{2 6 a}(0.453 \mathrm{~g}, 1.53 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($0.317 \mathrm{~g}, 2.3 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($1.99 \mathrm{~g}, 6.12 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (88 $\mathrm{mg}, 0.076 \mathrm{mmol}, 0.05$ equiv) in DME/water 1:1 (40 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $0.33 \mathrm{~g}(1.07 \mathrm{mmol} / 70 \%)$ of the analytically pure compound (purity: 96.89%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$; MW 308.34; mp: 174-176 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.51-8.45(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 158.04,157.97,155.33,148.91,148.61,145.36,144.53,139.93$, 125.87, 125.56, 120.25, 119.18, 115.56, 104.77, 37.07, 16.42; MS (ESI): $309.14(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-(2-methylpyridin-3-yl)furan-2-carboxamide (27b). To a suspension of 5-bromofuran-2-carboxylic acid ($1.00 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DCC ($1.08 \mathrm{~g}, 5.23 \mathrm{mmol}, 1$ equiv), DMAP ($31 \mathrm{mg}, 0.261 \mathrm{mmol}, 0.05$ equiv) in 40 ml DCM at $0^{\circ} \mathrm{C} 4$-methylpyridin-3-amine (0.565 $\mathrm{g}, 5.23 \mathrm{mmol}, 1$ equiv) was added. The mixture was stirred at room temperature overnight. The mixture was quenched with water (50 mL) and extracted three times with ethyl acetate (3×30 mL). The organic layer was washed with water, dried over MgSO 4 , filtered and evaporated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane/methanol 94:6) to give $1.3 \mathrm{~g}(4.62 \mathrm{mmol} / 88 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 281.11; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ $10.33(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41 (dd, $J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 280.94, 282.94 $(\mathrm{M}+\mathrm{H})^{+}$.

5-Bromo-N-methyl-N-(2-methylpyridin-3-yl)furan-2-carboxamide (27a). The title compound was prepared according to method C using 5-bromo-N-(2-methylpyridin-3-yl)furan-2-carboxamide
($0.9 \mathrm{~g}, 3.2 \mathrm{mmol}, 1$ equiv), $\mathrm{NaH}(0.153 \mathrm{~g}, 6.4 \mathrm{mmol}, 2$ equiv) and iodomethane ($0.199 \mathrm{ml}, 3.20$ mmol, 1 equiv) in DMF (30 ml). The product was purified by column chromatography (dichloromethane/methanol 97:3) to give $0.82 \mathrm{~g}(2.77 \mathrm{mmol} / 86 \%)$ of the analytically pure compound (purity: 95.81%). $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$; MW 295.14; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ $8.53-8.48(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (s, 3H); MS (ESI): 294.97, 296.98 $(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Hydroxyphenyl)-N-methyl-N-(2-methylpyridin-3-yl)furan-2-carboxamide (27). The title compound was prepared according to method D by the reaction of 27 a ($0.6 \mathrm{~g}, 2.03 \mathrm{mmol}, 1$ equiv) and (4-hydroxyphenyl) boronic acid ($0.42 \mathrm{~g}, 3.04 \mathrm{mmol}, 1.5$ equiv) in the presence of cesium carbonate ($2.64 \mathrm{~g}, 8.12 \mathrm{mmol}, 4$ equiv) and tetrakis(triphenylphosphine) palladium (117 $\mathrm{mg}, 0.101 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{DME} /$ water $1: 1(40 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 1:1) to give $0.466 \mathrm{~g}(1.15 \mathrm{mmol} / 74 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$; MW 308.34; mp: 199-201 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.54-8.49(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (dd, $J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (s, 2H), $3.26(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 158.04, 157.77, 155.82, 155.37, $148.20,145.40,138.94,135.91,125.58,122.60,120.25,119.23,115.55,104.76,36.82,20.24$; MS (ESI): $309.11(\mathrm{M}+\mathrm{H})^{+}$.

4-Methoxybenzohydrazide (31d).The title compound was prepared by refluxing methyl 4methoxybenzoate ($1.00 \mathrm{~g}, 6.01 \mathrm{mmol}, 1$ equiv) with the mixture of hydrazine hydrate $(2.91 \mathrm{ml}$, $60.17 \mathrm{mmol}, 10$ equiv) and methanol (15 mL) for 6 h . The excess hydrazine and methanol were evaporated to give the crude product which was recrystallized from methanol to give 0.85 g ($5.11 \mathrm{mmol} / 85 \%$) of the analytically pure compound (purity: 96.49%). $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$; MW 166.18; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, 2 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H})$, 3.79 ($\mathrm{s}, 3 \mathrm{H}$); MS (ESI): $166.80(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 5-(4-methoxyphenyl)-1,3,4-oxadiazole-2-carboxylate (31c). A mixture of 4methoxybenzohydrazide ($0.8 \mathrm{~g}, 4.81 \mathrm{mmol}, 1$ equiv), DIPEA ($0.905 \mathrm{ml}, 5.29 \mathrm{mmol}, 1.1$ equiv) and DMAP ($58 \mathrm{mg}, 0.481 \mathrm{mmol}, 0.1$ equiv) was dissolved in DCM (20 ml) and treated with ethyl 2-chloro-2-oxoacetate ($0.592 \mathrm{ml}, 5.29 \mathrm{mmol}, 1.1$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction
mixture was slowly warmed to room temperature and stirred overnight. Later, it was treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($0.671 \mathrm{ml}, 4.81 \mathrm{mmol}, 1$ equiv) $/ \mathrm{TsCl}(0.916 \mathrm{~g}, 4.81 \mathrm{mmol}, 1$ equiv) and stirred it overnight. The reaction mixture was diluted with $\mathrm{EtOAc} / \mathrm{DCM}$ and washed with water, saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The organic layer was collected, concentrated, and purified by column chromatography (petroleum ether /ethyl acetate $5: 1$) to give $0.98 \mathrm{~g}(3.94$ $\mathrm{mmol} / 82 \%$) of the analytically pure compound (purity: 94.79%). $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$; MW 248.08; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.01(\mathrm{~d}, 2 \mathrm{H}), 7.18(\mathrm{~d}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI): $248.98(\mathrm{M}+\mathrm{H})^{+}$.

Potassium 5-(4-methoxyphenyl)-1,3,4-oxadiazole-2-carboxylate (31b). Ethyl 5-(4-methoxyphenyl)-1,3,4-oxadiazole-2-carboxylate ($0.9 \mathrm{~g}, 3.62 \mathrm{mmol}$, 1 equiv) was dissolved in THF/EtOH $(10 \mathrm{~mL} / 5 \mathrm{~mL})$ and treated with $\mathrm{KOH}\left(0.203 \mathrm{~g}, 3.62 \mathrm{mmol}\right.$, 1 equiv) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the resulting mixture stirred for 2 h at $0^{\circ} \mathrm{C}$. The product, Potassium 5-(4-methoxyphenyl)-1,3,4-oxadiazole-2-carboxylate, precipitated out from the solution and was separated by filtration and used for the next step without further purification to give $0.88 \mathrm{~g}(3.4 \mathrm{mmol} / 94 \%)$ of the desired potassium salt. $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{KN}_{2} \mathrm{O}_{4}$; MW 258.27; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Deuterium Oxide) $\delta 7.75$ $(\mathrm{d}, 2 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$.

5-(4-Methoxyphenyl)-N-methyl-N-(o-tolyl)-1,3,4-oxadiazole-2-carboxamide (31a). To a stirred suspension of potassium 5-(4-methoxyphenyl)-1,3,4-oxadiazole-2-carboxylate ($0.8 \mathrm{~g}, 3.09$ mmol, 1 equiv) in acetonitrile (25 mL) at $0^{\circ} \mathrm{C}$, oxalyl chloride ($0.471 \mathrm{~g}, 3.71 \mathrm{mmol}, 1.2$ equiv) was added dropwise over 10 min . DMF (5 drops) was added to the reaction mixture, and vigorous gas evolution was observed. The resulting reaction mixture was stirred for further 2 h to form acyl chloride. The solvent was removed under reduced pressure. N,2-dimethylaniline ($0.386 \mathrm{ml}, 3.09 \mathrm{mmol}, 1$ equiv) and DIPEA ($1.37 \mathrm{ml}, 7.72 \mathrm{mmol}, 2.5$ equiv) were dissolved in DCM (25 mL) and added at $0^{\circ} \mathrm{C}$ to the acyl chloride. The reaction mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$, after which it was allowed to warm up to room temperature and stirred overnight. The mixture was quenched with water $(20 \mathrm{~mL})$ and extracted twice with $\mathrm{DCM}(2 \times 15 \mathrm{ml})$; the organic layer was dried over MgSO 4 , filtered and the solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $4: 1)$ to give $0.7 \mathrm{~g}(2.16 \mathrm{mmol} / 70 \%)$ of the analytically pure compound (purity: 99.99 \%). $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$; MW 323.35; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.77-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.37-$
$7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{td}, J=7.2,6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $323.99(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Hydroxyphenyl)-N-methyl-N-(o-tolyl)-1,3,4-oxadiazole-2-carboxamide (31). The title compound was prepared according to method E by the reaction of 31a ($0.68 \mathrm{~g}, 2.10 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(2.21 \mathrm{ml}, 21.02 \mathrm{mmol}, 10$ equiv) in dichloromethane (50 ml). The product was purified by column chromatography (dichloromethane/methanol 95:5) to give 0.5 g (1.61 $\mathrm{mmol} / 77 \%$) of the analytically pure compound (purity: 99.00%). $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$; MW 309.33; mp: 210-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.41$ (s, 1H), $7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28$ (ddd, $J=6.6,3.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (s, 3H), 2.26 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 164.01, 161.35, 157.24, 154.66, 140.91, 135.44, 131.02, 128.83, 128.79, 128.06, 127.10, 116.26, 112.90, 36.77, 17.03; MS (ESI):): $309.93(\mathrm{M}+\mathrm{H})^{+}$.

Ethyl 2-(4-methoxyphenyl)oxazole-4-carboxylate (32c). A mixture of 4-methoxy benzamide (0.6 $\mathrm{g}, 3.96 \mathrm{mmol}, 1$ equiv) and ethyl bromopyruvate ($0.597 \mathrm{ml}, 4.76 \mathrm{mmol}, 1.2$ equiv) was refluxed in ethanol (40 ml) for 5 h . The solvent was removed under reduced pressure. The residue was quenched with water, then extracted twice with ethyl acetate ($2 \times 15 \mathrm{ml}$). The organic layers were combined, dried over magnesium sulfate and concentrated to dryness under reduced pressure. The product was purified by column chromatography (petroleum ether /ethyl acetate 3:1) to give $0.75 \mathrm{~g}(3.03 \mathrm{mmol} / 76 \%)$ of the analytically pure compound (purity: 94.68%). $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$; MW 247.25; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.85$ (s, 1H), 7.94 (d, 2H), 7.10 (d, $2 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI): $247.98(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Methoxyphenyl)oxazole-4-carboxylic acid (32b). Ethyl 2-(4-methoxyphenyl)oxazole-4carboxylate ($0.7 \mathrm{~g}, 2.83 \mathrm{mmol}$, 1 equiv) was dissolved in THF/EtOH ($15 \mathrm{~mL} / 7.5 \mathrm{~mL}$) and treated with $\mathrm{KOH}\left(0.158 \mathrm{~g}, 2.83 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the resulting mixture stirred for 2 h at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The residue was quenched with water, acidified with 2 M HCl to pH 2 and extracted twice with ethyl acetate (2 x 10 ml). The organic layers were combined, dried over magnesium sulfate and concentrated to dryness under reduced pressure. The product was purified by column chromatography (petroleum ether /ethyl acetate $2: 1$) to give $0.45 \mathrm{~g}(2.05 \mathrm{mmol} / 72 \%)$ of the analytically pure compound (purity: 95.74 \%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{4}$; MW 219.20; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 13.09(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.94$
$(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): 219.94(\mathrm{M}+\mathrm{H})^{+}$.
2-(4-Methoxyphenyl)-N-methyl-N-(o-tolyl)oxazole-4-carboxamide (32a). The title compound was prepared according to method A and B using 2-(4-methoxyphenyl)oxazole-4-carboxylic acid $(0.4 \mathrm{~g}, 1.82 \mathrm{mmol})$, thionyl chloride $(0.264 \mathrm{ml}, 3.64 \mathrm{mmol})$ and DMF (5 drops) in toluene (10 $\mathrm{ml})$. The corresponding $\mathrm{N}, 2-$ dimethylaniline $(0.227 \mathrm{ml}, 1.82 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.508 \mathrm{ml}, 3.64$ mmol) in DCM (10 ml) was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $2: 1)$ to give $0.499 \mathrm{~g}(1.54 \mathrm{mmol} / 85 \%)$ of the analytically pure compound (purity: 99.44%). $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$; MW 322.36; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): 322.96(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Hydroxyphenyl)-N-methyl-N-(o-tolyl)oxazole-4-carboxamide (32). The title compound was prepared according to method E by the reaction of $\mathbf{3 2 a}(0.45 \mathrm{~g}, 1.39 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}(1.46 \mathrm{ml}, 13.95 \mathrm{mmol}, 10$ equiv) in dichloromethane $(30 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 97:3) to give 0.31 g (1.00 $\mathrm{mmol} / 72 \%$) of the analytically pure compound (purity: 99.91%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$; MW 308.34; mp: 220-222 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $)^{\text {(}} \delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}$, $1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.17$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d ${ }^{2}$) δ 160.93, 159.98, 159.96, 142.42, 140.37, 136.02, $135.51,130.94,128.35,128.32,127.86,127.12,117.15,115.82,36.49,17.10 ; \mathrm{MS}$ (ESI): 308.98 $(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Methoxyphenyl)thiazole-4-carboxylic acid (33b). The title compound was prepared according to method D by the reaction of ethyl 2-bromothiazole-4-carboxylate ($1.00 \mathrm{~g}, 4.23$ mmol, 1 equiv) and (4-methoxyphenyl)boronic acid ($0.965 \mathrm{~g}, 6.35 \mathrm{mmol}, 1.5$ equiv) in the presence of sodium carbonate $(2.24 \mathrm{~g}, 21.15 \mathrm{mmol}, 5$ equiv) and tetrakis(triphenylphosphine) palladium ($244 \mathrm{mg}, 0.211 \mathrm{mmol}, 0.05$ equiv) in toluene/ethanol $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 90:10) to give $0.87 \mathrm{~g}(3.69$ $\mathrm{mmol} / 87 \%$) of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$; MW 235.26; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 2 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H})$; MS (ESI): $236.00(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Methoxyphenyl)-N-methyl-N-(o-tolyl)thiazole-4-carboxamide (33a). The title compound
was prepared according to method A and B using 2-(4-methoxyphenyl)thiazole-4-carboxylic acid ($0.85 \mathrm{~g}, 3.61 \mathrm{mmol}$), thionyl chloride ($0.524 \mathrm{ml}, 7.22 \mathrm{mmol}$) and DMF (10 drops) in toluene $(20 \mathrm{ml})$. The corresponding $\mathrm{N}, 2$-dimethylaniline $(0.45 \mathrm{ml}, 3.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.00 \mathrm{ml}, 7.22$ $\mathrm{mmol})$ in DCM $(20 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate 3:1) to give $0.98 \mathrm{~g}(2.98 \mathrm{mmol} / 80 \%)$ of the analytically pure compound (purity: 98.76%). $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; MW 338.43; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{ddt}, J=7.5,1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.05(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): 339.05 $(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Hydroxyphenyl)-N-methyl-N-(o-tolyl)thiazole-4-carboxamide (33). The title compound was prepared according to method E by the reaction of $33 \mathrm{a}(0.650 \mathrm{~g}, 1.92 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}$ ($2.00 \mathrm{ml}, 19.2 \mathrm{mmol}, 10$ equiv) in dichloromethane (40 ml). The product was purified by column chromatography (petroleum ether /ethyl acetate 2:1) to give $0.359 \mathrm{~g}(1.1 \mathrm{mmol} / 57 \%)$ of the analytically pure compound (purity: 99.99%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; MW 324.40; mp: 237-239 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 165.68,162.79,159.52,150.23$, 143.44, 135.24, 130.51, 128.00, 127.76, 127.54, 126.66, 123.85, 122.97, 115.66, 36.83, 17.40; MS (ESI): $324.94(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Methoxyphenyl)thiazole-5-carboxylic acid (34b). The title compound was prepared according to method D by the reaction of methyl 2-bromothiazole-5-carboxylate ($1.00 \mathrm{~g}, 4.5$ mmol, 1 equiv) and (4-methoxyphenyl)boronic acid ($1.02 \mathrm{~g}, 6.75 \mathrm{mmol}, 1.5$ equiv) in the presence of sodium carbonate $(2.38 \mathrm{~g}, 22.5 \mathrm{mmol}, 5$ equiv) and tetrakis(triphenylphosphine) palladium ($260 \mathrm{mg}, 0.225 \mathrm{mmol}, 0.05$ equiv) in toluene/ethanol $1: 1(50 \mathrm{ml})$. The product was purified by column chromatography (dichloromethane/methanol 90:10) to give 0.89 g (3.78 $\mathrm{mmol} / 84 \%$) of the analytically pure compound (purity: 94.68%). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$; MW 235.26; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 13.50(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $236.01(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Methoxyphenyl)-N-methyl-N-(o-tolyl)thiazole-5-carboxamide (34a). The title compound was prepared according to method A and B using 2-(4-methoxyphenyl)thiazole-5-carboxylic acid ($0.80 \mathrm{~g}, 3.4 \mathrm{mmol}$), thionyl chloride ($0.493 \mathrm{ml}, 6.8 \mathrm{mmol}$) and DMF (10 drops) in toluene
$(20 \mathrm{ml})$. The corresponding $\mathrm{N}, 2$-dimethylaniline ($0.424 \mathrm{ml}, 3.4 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.95 \mathrm{ml}, 6.8$ $\mathrm{mmol})$ in DCM $(20 \mathrm{ml})$ was added to the acyl chloride. The residue was purified by silica gel column chromatography (petroleum ether /ethyl acetate $4: 1$) to give $0.85 \mathrm{~g}(2.51 \mathrm{mmol} / 73 \%)$ of the analytically pure compound (purity: 95.60%). $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; MW 338.43; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): $339.05(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-Hydroxyphenyl)-N-methyl-N-(o-tolyl)thiazole-5-carboxamide (34). The title compound was prepared according to method E by the reaction of $\mathbf{3 4 a}$ ($0.8 \mathrm{~g}, 2.36 \mathrm{mmol}, 1$ equiv) and $\mathrm{BF}_{3} . \mathrm{SMe}_{2}$ ($2.48 \mathrm{ml}, 23.6 \mathrm{mmol}, 10$ equiv) in dichloromethane $(50 \mathrm{ml})$. The product was purified by column chromatography (petroleum ether /ethyl acetate 3:1) to give $0.5 \mathrm{~g}(1.54 \mathrm{mmol} / 65 \%)$ of the analytically pure compound (purity: 99.00%). $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; MW 324.40; mp: 219-221 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.12$ ($\mathrm{s}, 1 \mathrm{H}$), $7.64-7.59$ ($\mathrm{m}, 2 \mathrm{H}$), 7.43 (dt, $J=8.8,5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37$ (dd, $J=5.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 170.94,160.22,160.09,146.43,141.59,135.98$, $131.66,131.36,129.40,128.99,128.04,127.89,123.50,116.00,36.96,16.88$ MS (ESI): 324.98 $(\mathrm{M}+\mathrm{H})^{+}$.
2. Representative ${ }^{1} \mathbf{H N M R},{ }^{13}$ CNMR and MS spectra of compounds $\mathbf{1 3}, \mathbf{1 7}, 19,33$ and 37 .

Compound 13:

$\begin{array}{lllllllllllllllllllllllllllllllllll}160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15\end{array}$

Compound 17:

Compound 19:

AB54TT46.80 \#1378 RT: 16.92 AV: 1 NL-1.48E7

Compound 33:

(s)

AB118_191123134633 \#422-476 RT: 720-8.12 AV: 65 NL. 7..67E7

Compound $\mathbf{3 7}$


```
AB119-191030150707 \#481 RT: 7.87 AV: 1 NL. 4.61E7
T: + © ESI CIMS |100:000:700.000
```


3. Validation of drug-prodrug concept (compounds 16,19 and 37)

To study the effect of the presence of an electronegative atom such as chlorine on the stability of the sulfamate moiety, the two compounds 16 and 19 were studied. Compound 16 contains chlorine ortho to the sulfamate group, $\mathbf{1 9}$ in meta position. It was expected that compound $\mathbf{1 3}$ (unsubstituted sulfamate) will be more stable than compound 19 which in turn was assumed to be more stable than compound 16. Regarding 16, the results revealed that it was completely hydrolyzed after 6 h incubation of 10 nM of it in phosphate buffer. 50% inhibition of 17β-HSD1 was reached quickly (below 1 h) and after 22% of it converted to $4(2.2 \mathrm{nM})$, see Figure S1. This inhibition is approximately equal to the cell-free IC_{50} of 17β-HSD1 for $\mathbf{4}$, which is 2.7 nM .

Figure S1. Plots of percentage conversion (blue) of compound 16 to compound 4 and the percentage of 17β-HSD1 inhibition (red) at starting concentration of 10 nM of $\mathbf{1 6}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

In a cellular assay using T47D/DMEM, 16 hydrolyzes too quickly (Figure S2) to see a steady rise of percent inhibition because 4 is very potent in cellular systems with $5.2 \mathrm{nM} \mathrm{IC}_{50}$ for 17β HSD1. Moreover, T47D cells contain esterases that can accelerate hydrolysis of $\mathbf{1 6}$ to its phenolic compound $\mathbf{4}$ which may explain why 16 was more stable in phosphate buffer than in T47D/DMEM).

Figure S2. Plots of percentage conversion (blue) of compound 16 to compound $\mathbf{4}$ and the percentage of 17β-HSD1 inhibition (red) at a starting concentration of 10 nM of $\mathbf{1 6}$ in a cellular system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

The sulfamates should have a suitable stability (not too short, to allow for STS inhibition), but this was not the case with $\mathbf{1 6}$. Its instability compared to $\mathbf{1 3}$ could be explained by the orthochloro substituent to the sulfamate group, which makes it more liable for hydrolysis. Compound 19 -with a chlorine atom in meta-position to sulfamate moiety- was completely hydrolyzed to its phenolic derivative 7 after 12 h in phosphate buffer and after 9h in T47D/DMEM. Thus, 19 showed an intermediate stability between $\mathbf{1 3}$ (unsubstituted sulfamate) and $\mathbf{1 6}$ (ortho substituted sulfamate). A concentration of 32.5 nM of 7 (after 50% conversion of 19) was reached after 6 h , causing 50% inhibition of 17β-HSD1, see Figure S3. This matches very well the cell-free IC IC_{50} of 7 for 17β-HSD1 inhibition of 32 nM . In a cellular assay and starting with compound 19 in a concentration of $30 \mathrm{nM}, 50 \%$ inhibition of 17β-HSD1 was reached after 45% of $\mathbf{1 9}$ were hydrolyzed to 7 (i.e., at a concentration of 7 of 13.5 nM , see Figure S4. This coincides very well with the cellular IC_{50} for $17 \beta-\mathrm{HSD} 1$ inhibition of $7(14 \mathrm{nM})$. In conclusion, the prodrug principle was confirmed, in which the inhibition of 17β-HSD1 was performed exclusively by the released drug upon incubation of the prodrug in biological systems.

Figure S3. Plots of percentage conversion (blue) of 19 to 7 and percentage of $17 \beta-\mathrm{HSD} 1$ inhibition (red) at a starting concentration of 75 nM of $\mathbf{1 9}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Figure S4. Plots of percentage conversion (blue) of 19 to 7 and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 30 nM of $\mathbf{1 9}$ in a cellular system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Thiazole 37 was less stable than the corresponding furan 13 in both the cell-free (\% conversion of $\mathbf{3 7}$ to $\mathbf{3 3}=65 \%$ after 24 h ; Figure S5) and the cellular assay ($\%$ conversion of $\mathbf{3 7}$ to $\mathbf{3 3}=$ 99% after 12 h ; Figure S6). After incubation of 75 nM of 37 in phosphate buffer, 50% inhibition of 17β-HSD1 had been attained when 50% of 37 converted to $33(37.5 \mathrm{nM})$ as shown in Figure S5. This matches very well the cell-free IC_{50} of 17β-HSD1 inhibition of $33(34 \mathrm{nM})$. In the cellular setup at a starting concentration of 37 of $30 \mathrm{nM}, 50 \% 17 \beta-\mathrm{HSD} 1$ inhibition was achieved at 42% hydrolyzation to 33 (see Figure S6), which is equal to a concentration of $\mathbf{3 3}$ of 12.6 nM . Again, this matches very well the cellular IC_{50} of 33 (12 nM).

Figure S5. Plots of percentage conversion (blue) of 37 to 33 and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 75 nM of $\mathbf{3 7}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Figure S6. Plots of percentage conversion (blue) of $\mathbf{3 7}$ to $\mathbf{3 3}$ and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 30 nM of $\mathbf{3 7}$ in a cellular system. Each data point in the figure represents themean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

4. Validation of drug-prodrug concept for compound 13 at different starting concentrations.

Figure S7. Plots of percentage conversion (blue) of $\mathbf{1 3}$ to $\mathbf{1}$ and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 100 nM of $\mathbf{1 3}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Figure S8. Plots of percentage conversion (blue) of $\mathbf{1 3}$ to $\mathbf{1}$ and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 500 nM of $\mathbf{1 3}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Figure S9. Plots of percentage conversion (blue) of $\mathbf{1 3}$ to $\mathbf{1}$ and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 750 nM of $\mathbf{1 3}$ in a cell-free system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

Figure S10. Plots of percentage conversion (blue) of $\mathbf{1 3}$ to $\mathbf{1}$ and percentage of 17β-HSD1 inhibition (red) at a starting concentration of 75 nM of $\mathbf{1 3}$ in a cellular system. Each data point in the figure represents the mean value of two independent experiments each conducted in duplicates, standard deviation less than 20%.

5. HEK-293 cell growth inhibition assay and cytotoxicity data

Cells were grown in Dulbecco's Modified Eagle's Medium (DMEM, Sigma) containing 10 \% fetal calf serum (FCS, Sigma). All cell media contained in addition penicillin G (final concentration $100 \mathrm{U} / \mathrm{mL}$) and streptomycin sulfate (final concentration $100 \mathrm{mg} / \mathrm{mL}$) and were maintained at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in a humidified incubator. Cells were seeded in 96-well standard assay microplates at a density of 45000 cells per well, then allowed to adhere overnight before compound addition. After 24 h , cells were treated with different concentrations of the compounds (maximum concentration: $20 \mu \mathrm{M}$). Cells were incubated for additional 48 h at $37{ }^{\circ} \mathrm{C}$, after which $20 \mu \mathrm{~L}$ of MTT reagent (prepared as $5 \mathrm{mg} / \mathrm{mL}$ phosphate buffer saline, PBS) were added and then incubated for additional 1 h . After that, $100 \mu \mathrm{~L}$ of sodium dodecylsulfate (SDS, prepared as 10% in $0.01-\mathrm{N} \mathrm{HCl}$) were added and incubated for at least 2 h at $37{ }^{\circ} \mathrm{C}$ to allow for cell lysis. Absorbance was then measured at a wavelength of 570 nm in a plate reader (PolarStar, BMG Labtech, Freiburg, Germany). Tunicamycin was used as a positive control (50 \% growth inhibition at $0.1 \mu \mathrm{M})$. Proliferation in the presence of the vehicle was arbitrarily set to 0% growth inhibition.

